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Abstract: Development of effective chromatographic separation involves
judicious deciding of the selection of optimal experimental conditions that can
provide an adequate resolution at a reasonable run time for the separation of
interested components. The isomers of 2-methyl-6-nitroaniline and 2-methyl-
4-nitroaniline were selected as the model compounds for the application of opti-
mization strategies by high performance liquid chromatography. Response
surface methodologies based on three level, three variable designs such as the
Box-Behnken design, central composite face centered, central composite circum-
scribed design, and full factorial design were comparatively used for the optimiza-
tion with respect to column temperature, flow rate, and the percentage of eluent.
Statistical interpretation of the variables on different responses such as resolution
and retention time of the last component was performed. The optimum condi-
tions of these variables were predicted by using a second order polynomial model
fitted to the results obtained by applying four designs. The response surface plots
using three experimental designs revealed a separation optimum with a 25�C col-
umn temperature, a flow rate of 1.0 mL=min, and ACN percentage of 70%. The
significance of the statistical designs was confirmed by the generally good agree-
ment obtained between predicted responses and actual experimental data. We
have concluded that experimental designs offer a rapid means of optimizing
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several variables and provide an efficient test for the robustness of the
analytical method.

Keywords: 2-methyl-4-nitroaniline, 2-methyl-6-nitroaniline, Experimental design,
High performance liquid chromatography, Response surface methodology

INTRODUCTION

Many methods have been developed in order to optimize the parameters of
interest in high performance liquid chromatography (HPLC) and related
techniques.[1,2] In chemometric approaches, experimental measurements
are performed in such a way that all variables vary together. An objective
function is utilized in which the analyst introduces the desired criteria (selec-
tivity, resolution, retention time). The advantage of chemometrics tools is
that no explicit models are required, and when models are available optimi-
zation is easier to perform by regression methods. Optimization of a HPLC
separation condition is a critical step, since the wide array of variables such
as mobile phase composition, pH, column temperature, flow rate, column
length, and injection time can influence the separation efficiency, retention
time, resolution, and etc. and a complete and quite general physicochemical
model in HPLC is not popular.[3–5] One approach to achieve an optimal
separation is to vary the experimental parameter steps while keeping other
parameters constant. But the search for the optimal separation condition
by this approach requires too much experimental work and is tedious
and time consuming. Furthermore, when interaction appears, an indepen-
dent univariate optimization is not appropriate to find the best experimen-
tal conditions since the influence of any given variable depends on the
magnitude of other variable.

A suitable alternative to overcome the aforementioned shortcomings
lies in experimental design techniques. Moreover, the number of experi-
ments to be carried out can be reduced drastically when following these
chemometric strategies.[6–9] Chemometrics are involved in the preliminary
stages for the establishment of an HPLC method and the analysis of
HPLC data to extract the maximum amount of significant information.
It allows a large number of parameters to be screened simultaneously,
and to achieve this in a small number of mathematical runs, is the most
important aspect of mathematical design and will provide a mathematical
framework. Experimental designs such as Plackeet-Burman design
(PBD), Box-Behnken design (BBD), central composite face-centered
design (CCFD), central composite circumscribed design (CCCD), full-
factorial design (FFD), etc. have been used for the separation studies
of HPLC and related technologies.[10–15] Several studies have been
reported on the use of multivariate statistical analysis to optimize HPLC
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methods. Depending on the design, the response model can show the rela-
tionship between each parameter. BBD, CCFD, CCCD, and FFD are the
response surface methods used to optimize the chromatographic and elec-
trophoretic separation.[16,17] As an efficient statistical tool for optimiza-
tion of multiple variables, it can be performed respectively to predict the
best performance conditions by using a minimum number of experiments.

2-Methyl-6-nitroaniline and 2-methyl-4-nitroaniline are aromatic
nitro amino compounds, which are generally used as intermediates for
dyes and drugs. The aromatic compounds are known to damage the
human liver and are registered as toxic substances; quality control con-
cerning the isomers is lacking. In the present work, response surface
methodologies including BB, CCF, CCC, and FF designs have been com-
parably performed to determine the optimal separation conditions by
HPLC taking the above isomers as the model compounds. Increased
resolution and retention time can be obtained using the experimental
design methodology instead of some commercial optimization soft-
wares.[18] Furthermore, in order to find the best compromise between sev-
eral responses, a multicriteria decision making approach was used, which
the resolution response and retention time response can be simulta-
neously optimized. Baseline separation of the model analytes has been
obtained quickly during 5 min with a resolution greater than 1.5.

EXPERIMENTAL

Chemicals

2-Methyl-6-nitroaniline, 2-methyl-4-nitroaniline standard samples were
kindly provided by Xinxiang Wanfang Chemical Industry Co. Ltd, thiourea,
acetonitrile (ACN), methanol, and other reagents were purchased from
Beijing Chemical Reagent Company and Tianjing Kemiou Chemical
Reagent Company, China. All solvents used were of HPLC or analytical
reagent grade. Distilled water was obtained from a super purification system
(Danyangmen Corporation, Jiangshou, China). All solutions were degassed
with ultra-sonication and filtered through a membrane (0.45mm) before use.
In a typical chromatographic experiment, mixtures of thiourea and the iso-
mers were dissolved in methanol and injected for peak identification. For the
separation the analytes, the compounds were properly mixed and used for
the optimization of conditions and effective separations.

Apparatus

Chromatographic measurements were made on a HP1100 Series HPLC
system (Agilent Technologies, Inc., Walbronn, Germany) equipped with
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a quaternary pump, a vacuum degasser module, a Rheodyne injector
with a 20 mL sample loop, a temperature controlled column compart-
ment, and a variable wavelength UV detector set at 254 nm. An HPLC
separation was performed on an 15 cm�4.6 mm, i.d., stainless steel col-
umn packed with ZORBAX SB-C18 (5 mm particle size, 100 A pore size).

Software

The Microsoft Excel Program (Microsoft Corporation) and Design
Expert 7.0 Software (Stat-Ease, Inc. Minneapolis, MN) were used for set-
ting the polynomial equations and the statistical analysis of the response
variables. Design Expert 7.0 Software was used for making the Response
surface diagrams.

RESULTS AND DISCUSSION

Response Surface Methodology

In the present work, column temperature, flow rate, and percentage of
the eluent (ACN) in the binary mobile phase (ACN=H2O, v=v) system
were optimized to have effective separation of the analytes by employing
the experimental design strategy similar to the methodology adopted else-
where.[19] Fifteen experimental conditions were chosen from the strategic
positions in a cubic diagram (Figure 1). These experimental conditions
are described in Table 1. Maximum and minimum column temperature
(x1) was fixed as 15.0�C and 35.0�C, respectively. Likewise, a minimum
and maximum for flow rate (x2) for the experimental designs was selected
as 0.5 mL=min and 1.5 mL=min, respectively. The percentage of ACN
(x3) was kept in between 55% and 85%. The resolution among the isomers
and the maximum retention time (for the last eluting peak) were noted as
responses with these experiments.

Initial method screening to determine the most significant variables
for the analytes did not require an experimental design approach due
to our knowledge.[20,21] As shown in Table 1, three important variables
were chosen for the optimization designs, namely column temperature,
flow rate, and percentage of ACN. In order to calculate quadratic regres-
sion model coefficients, each design variable has to be studied at three
distinct levels or five levels at least.

BB, CCF, CCC, and FF models were comparatively used for the
multivariable approaches. For BB design, the experimental plan for a
three parameter design is laid out according to the following pattern:
two variables have a combination of their extreme levels, while the other
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is set to its mean value. For a three parameter design, all experimental
points are located on the edges of a cube around the centre points
(Figure 1a). The CCF and CCC designs are based on a full factorial
design, which is augmented by centre points and axial or start points
(Figures 1b and 1c). There are, therefore, 8 cube points (for a full factor-
ial) with levels of �1 andþ1, 6 axial or start points with levels of �a
andþa, and 6 replicates of the centre point. Depending on the a value,
three types of models are distinguished: central composite face centre if

Table 1. Coded and true values of variables of the BB, CCF, CCC, and FF
design models

Code Level

Variables
Coded
value

True
value �1.682 �1 0 1 1.682

Column temperature (�C) X1 x1 8.2 15 25 35 41.8
Flow rate (mL=min) X2 x2 0.159 0.5 1 1.5 1.841
ACN percentage (%) X3 x3 44.8 55 70 85 95.2

Figure 1. The representation of BB, CCF, CCC, and FF design models.
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a¼ 1, central composite circumscribed if a> 1, and central composite
inscribed (CCI) if a< 1. The first type is spherical designs, while the
CCF and CCI is a cubic design. Here, for three variables and three or five
levels, a total of 20 experiments were considered. As with the CCD
model, the BB design is a response surface method used to examine the
relationship between one or more response variables and a set of quanti-
tative experimental parameters. The BBD is not directly based on a full
factorial design as it uses middle points instead of corner points. The
BB design requires fewer experiments than CCF and CCC but cover a
slightly smaller experimental region. It is also a spherical design. A full
factorial design of experiment measures the response of every possible
combination of factors and factor levels (Figure 1d). These responses
are analyzed to provide information about every main effect and every
interaction effect.

The levels of three variables for four designs are shown in Table 1.
For BB, CCF, CCC, and FF designs, maximum and minimum concen-
tration for column temperature (x1) were fixed as 15�C and 35�C, respec-
tively. Likewise, flow rate (x2) and ACN percentage (x3) were chosen as
0.5� 1.5 mL=min and 55� 85%, respectively. For the CCC design, five
levels of three variables should be performed with a a value of 1.682.
The BB model with a total of seventeen experiments (the twelve middle
points of the edges on a cube and 5 centre points, the CCF and CCC
models with a total of twenty experiments, the FF design with a total
of twenty seven experiments are depicted in Tables 2–5, respectively.
All other experimental plans and the runs were randomized to exclude
any bias. The resolution response (Rs) and the retention time (tend) were
monitored during processing. The calculated responses for the analytes
were also respectively included in Tables 2–5.

In order to define the relationship between the responses and the
variables, a quadratic regression model should be applied on the basis
of a multiple linear regression (MLR). The selected model included 10
coefficients (the constant term, B0, three main effects, three quadratic
terms, and three interaction terms, as indicated in the equation.[22–24]

y ¼ B0 þ
Xn

i¼1

Bixi þ
Xn

i¼j¼1

Bijxixj

In our studies, it can be changed into the following equation accord-
ing to the n value and the coded values of three variables as follows:

y ¼ B0 þ B1X1 þ B2X2 þ B3X3 þ B12X1X2 þ B13X1X3 þ B23X2X3

þ B11X2
1 þ B22X2

2 þ B33X2
3
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Table 2. Experimental design and response results using BBD model

Run x1 x2 x3 Rs Exp. Pred. Tend Exp. Pred.

1 �1 �1 0 2.86 2.94 5.90 6.26
2 1 �1 0 2.48 2.49 5.27 5.50
3 �1 1 0 2.62 2.61 1.96 1.73
4 1 1 0 2.22 2.15 1.73 1.38
5 �1 0 �1 5.08 5.07 5.84 6.08
6 1 0 �1 4.19 4.24 4.56 4.93
7 �1 0 1 1.49 1.44 2.04 1.67
8 1 0 1 1.34 1.35 1.95 1.70
9 0 �1 �1 5.01 4.95 10.68 10.07

10 0 1 �1 4.52 4.54 3.52 3.51
11 0 �1 1 1.64 1.62 3.99 4.01
12 0 1 1 1.29 1.35 1.33 1.93
13 0 0 0 2.56 2.53 2.75 2.75
14 0 0 0 2.60 2.53 2.75 2.75
15 0 0 0 2.52 2.53 2.74 2.75
16 0 0 0 2.51 2.53 2.75 2.75
17 0 0 0 2.48 2.53 2.75 2.75

Table 3. Experimental design and response results using CCF model

Run x1 x2 x3 Rs Exp. Pred. Tend Exp. Pred.

1 �1 �1 �1 5.54 5.51 11.76 11.29
2 1 �1 �1 4.55 4.54 9.49 9.44
3 �1 1 �1 5.08 5.07 4.06 4.12
4 1 1 �1 4.10 4.10 3.15 3.01
5 �1 �1 1 1.71 1.71 4.10 4.21
6 1 �1 1 1.58 1.59 3.92 3.82
7 �1 1 1 1.36 1.37 1.36 1.37
8 1 1 1 1.22 1.25 1.30 1.73
9 �1 0 0 2.83 2.87 2.91 3.20

10 1 0 0 2.35 2.32 2.60 2.46
11 0 �1 0 2.74 2.78 5.61 6.12
12 0 1 0 2.42 2.39 1.84 1.49
13 0 0 �1 4.63 4.69 5.11 5.72
14 0 0 1 1.41 1.36 1.99 1.54
15 0 0 0 2.56 2.53 2.75 2.69
16 0 0 0 2.6 2.53 2.75 2.69
17 0 0 0 2.52 2.53 2.74 2.69
18 0 0 0 2.51 2.53 2.75 2.69
19 0 0 0 2.48 2.53 2.75 2.69
20 0 0 0 2.54 2.53 2.75 2.69
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Where y is the response to be modeled (Rs and tend), Bi are the coefficients
of the models by MLR, X1 is column temperature (in coded variable), X2

is the flow rate (in coded variable) and X3 is the ACN percentage (in
coded variable).

Coefficients used for four mathematical models of different responses
could be calculated with the help of Design Expert 7.0 Software, which
have been calculated and plotted from Figures 2a and 2b. The compara-
tive effects for three models have been clearly shown. When the coeffi-
cient is not included in the 95% confidence interval, this means that it
is statistically different from 0 and, therefore, the variable associated to
this efficient has a significant influence on response. If it is positive, it
favorably influences response whether it represents a main or quadratic
effect or a first order interaction.

As shown in Figure 2a, all terms except x1, x1
�x2, x1

�x3, and x1
2 have

high significant influences on retention time for BB design; all terms but
x1
�x2, x1

�x3, and x1
2 have high significant influences for CCF models; all

terms but x1, x1
�x2, x1

�x3, x2
�x3, and x1

2 have high significant influences
for CCC model, and all terms but x1

�x2, x1
�x3, and x1

2 have high signifi-
cant influences for FFD model. As for resolution in Figure 2b, all terms
except x1

�x2, x2
�x3, x1

2, and x2
2 have significant influences on resolution

Table 4. Experimental design and response results using CCC model

Run x1 x2 x3 Rs Exp. Pred. Tend Exp. Pred.

1 �1 �1 �1 5.54 5.47 11.76 13.25
2 1 �1 �1 4.55 4.56 9.49 11.52
3 �1 1 �1 5.08 5.03 4.06 3.97
4 1 1 �1 4.10 4.11 3.15 2.98
5 �1 �1 1 1.71 1.57 4.10 5.46
6 1 �1 1 1.58 1.51 3.92 5.19
7 �1 1 1 1.36 1.23 1.36 0.52
8 1 1 1 1.22 1.17 1.30 1.00
9 �1.682 0 0 2.77 2.94 2.97 2.41

10 1.682 0 0 2.12 2.12 2.47 1.36
11 0 �1.682 0 2.90 3.00 17.32 14.23
12 0 1.682 0 2.26 2.33 1.48 2.89
13 0 0 �1.682 6.83 6.83 11.04 9.67
14 0 0 1.682 0.90 1.07 1.76 1.45
15 0 0 0 2.56 2.53 2.75 2.79
16 0 0 0 2.60 2.53 2.75 2.79
17 0 0 0 2.52 2.53 2.74 2.79
18 0 0 0 2.51 2.53 2.75 2.79
19 0 0 0 2.48 2.53 2.75 2.79
20 0 0 0 2.54 2.53 2.75 2.79
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for BB models; all terms except x1
�x2, x2

�x3, and x2
2 have significant

influences on migration time for CCF design; all terms except x1
�x2,

x2
�x3, x1

2, and x2
2 have significant influences on resolution for CCC mod-

els; all terms except x1
�x2, x2

�x3, and x1
2 have significant influences on

migration time for FFD design.
The significance of the parameters estimated by the least squares

can be assessed by using classical statistical tools as ANOVA. When
different single response or multi-responses are chosen as the objective
function, the most significant variables for different responses will
be different. The three models were found to describe the experimental
data adequately, with high confidence (p< 0.05) and led to different
coefficients of determination (R2), the adjusted coefficients of determi-
nation (R2

adj.), which is related to the number of parametric

Table 5. Experimental design and response results using FFD model

Run x1 x2 x3 Rs Exp. Pred. Tend Exp. Pred.

1 �1 �1 �1 5.54 5.44 11.76 11.04
2 �1 �1 0 2.86 3.02 5.90 6.53
3 �1 �1 1 1.71 1.68 4.10 4.14
4 �1 0 �1 5.08 5.16 5.84 6.34
5 �1 0 0 2.83 2.77 2.91 2.94
6 �1 0 1 1.49 1.46 2.04 1.64
7 �1 1 �1 5.08 5.02 4.06 4.04
8 �1 1 0 2.62 2.66 1.96 1.72
9 �1 1 1 1.36 1.37 1.36 1.52

10 0 �1 �1 5.01 4.97 10.68 10.19
11 0 �1 0 2.74 2.76 5.61 6.03
12 0 �1 1 1.64 1.62 3.99 3.98
13 0 0 �1 4.63 4.69 5.11 5.66
14 0 0 0 2.56 2.51 2.75 2.59
15 0 0 1 1.41 1.40 1.99 1.64
16 0 1 �1 4.52 4.55 3.52 3.51
17 0 1 0 2.42 2.40 1.84 1.54
18 0 1 1 1.29 1.31 1.33 1.68
19 1 �1 �1 4.55 4.52 9.49 9.38
20 1 �1 0 2.48 2.52 5.27 5.56
21 1 �1 1 1.58 1.58 3.92 3.85
22 1 0 �1 4.19 4.24 4.56 5.00
23 1 0 0 2.32 2.26 2.60 2.27
24 1 0 1 1.34 1.35 1.95 1.66
25 1 1 �1 4.10 4.10 3.15 3.00
26 1 1 0 2.22 2.15 1.73 1.38
27 1 1 1 1.22 1.27 1.30 1.86
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coefficients in the model and the predictive power of the model, which
is given by the predicted R2. In fact, the values of R2 and R2

adj. are
indicators of the explanatory power of the model and varies from 0,
when the model does not explain the response, to 1 for a perfectly
explained response. The predicted R2 is a measure of how well the
model will predict the responses for a new experimental condition.
The predicted R2 is the predictive measure corresponding to the mea-
sure of fit, while R2 is the percent variation of the response explained
by the model. It gives a lower estimate to how well the model predicts
the outcome of new experiments, while R2 gives an upper estimate.
The statistical evaluation of these models is shown in Table 6. This
table revealed that R2, R2

adj., and the predicted R2 for the responses,
except the predicted R2 of CCC model for the retention time were
higher than 0.859, indicating the good fitting of these models, and
allowing to establish response surfaces and contour plots and predict
any responses within the experimental domain.

Figure 2. (a) The relationship between the resolution response and the coeffi-
cients of three models with corresponding SD; (b) The relationship between
migration time of the second peak and the coefficients of three models with
corresponding SD. Error bars represent� SD at level 0.05.
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On knowing the coefficients,the function of experimental responses
related to three variables could be obtained. Based on the mathematical
model, the response surface can be explored graphically. In this case, one
can plot the response surfaces and their two dimensional contour plots
against two of the variables, while the third is held constant at a specified
level, usually the center value. Figures 3–10 shows the response surfaces
and contour plots for the isomer separation using four designs, obtained
plotting column temperature (X1) versus flow rate (X2), and ACN percen-
tage (X3). It can be observed that the response (Rs) show the same beha-
vior among four studied models. An increase in ACN percentage will
apparently decrease the resolution, meanwhile column temperature and
flow rate has a little effect on it. For the retention time (tend), flow rate
and ACN percentage have apparent negative effects, while column
temperature has a little effect on it.

Derringer’s Desirability Function

Generally, responses were usually transformed into an appropriate desir-
ability scale to balance between different responses. Frequently, different
weight factors should be assigned for each response, with larger weights
corresponding to more important responses and smaller weights to less
important responses.[25] After the individual desirabilities were calculated
for each response, they were combined to provide a measure of the com-
posite desirability of the multi-response system. This measure is the
weighted geometric average of the individual desirability or the responses.
Sometimes, it is very difficult to choose different weights according to
the importance of different variables. The most popular methodology
applied to multiple response optimization is the desirability function
approach.[11,26]

The measured properties of each response Yi, I¼ 1, 2, . . . m, are
transformed to a dimensionless desirability scale (di), defined as partial
desirability function. This make it possible to combine results obtained

Table 6. Statistical evaluation of each model (date from Design-Expert, Version
7.0.1 Stat-Ease, Inc. Minneapolis, MN 55413)

Response

Experimental
average

value n¼ 6
BB Pred.

value
CCF Pred.

value
CCC Pred.

value
FF Pred.

value

Rs 2.54 2.53 2.53 2.53 2.51
Tend 2.75 2.75 2.69 2.79 2.59
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for properties measured on different scales. The scale of the desirability
function ranges between d¼ 0, for a completely undesirable response,
and d¼ 1, if the response is at the target value. Once the function di is
defined for each of the m responses of interest, an overall objective

Figure 3. Response surface plot and its contour curve of Rs using BB design
model.
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function (D), representing the global desirability function, is calculated
by determining the geometric mean of the individual desirabilities. There-
fore, the function D over the experimental domain is calculated, as
follows: D¼ (P di)

1=m. Taking into account all requirements for m

Figure 4. Response surface plot and its contour curve of tend using BB design
model.
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responses, we can choose the conditions on the design variables that max-
imize D. In our study, only the resolution response (Rs), and the retention
time of the second component (tend) have been considered. In order to
define D quality response, tend, and Rs were normalized. The shortest tend

Figure 5. Response surface plot and its contour curve of Rs using CCF design model.
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(5.0 min) and the highest R value (3.0) in all experiments were given the
value 1 (maximum), while the longest tend (10.0 min) and the lowest R2

values (the unwanted one, 1.5) were given the value 0 (minimum). This is

Figure 6. Response surface plot and its contour curve of tend using CCF design
model.
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shown in Figure 11. Linear interpolation allowed us to calculate the normal-
ized values for the remaining t2 and R, normalized values were called d1, and
d2, which could be calculated according to the following equations:[25,26]

Figure 7. Response surface plot and its contour curve of Rs using CCC design
model.
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d1 ¼ ðRi � RminÞ=ðRmax � RminÞ; if 1:5 < Ri < 3:0;

di ¼ 0; if Ri � 1:5; di ¼ 1; if Ri � 3:0: ð1Þ

Figure 8. Response surface plot and its contour curve of tend using CCC design
model.
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d2 ¼ ðtmax � tiÞ=ðtmax � tminÞ; if 5:0 < ti < 10:0; di ¼ 1; if ti � 5:0;

di ¼ 0; if ti � 10:0: ð2Þ

Figure 9. Response surface plot and its contour curve of Rs using FF design
model.
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A value of D different to zero implies that all responses are in a desir-
able range simultaneously and consequently, for a value of D close or
equal to 1, the combination of the different criteria is globally optimal,
so the response values are near target values.

Figure 10. Response surface plot and its contour curve of tend using FF design model.
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After calculation by the Design Expert program, the final equations
in terms of coded variables using three experimental designs were the
following:

DBBD ¼ 1:00� 0:0057X1 þ 0:10X2 � 0:097X3 � 0:040X12 � 0:046X13

� 0:30X23 þ 0:081X2
1 � 0:14X2

2 � 0:34X2
3 ð3Þ

Figure 11. Shape of the di function associated to the response Yi, resolution (Rs);
(b) retention time of the last peak (tend).

Figure 12. Chromatograms of the isomers using the optimal conditions. Station-
ary phase: ZORBAX SB-C18, wavelength 254 nm, column temperature 25�C, flow
rate of 1.0 mL=min, ACN percentage of 70%. Peak identification: 1: uracil;
2: 2-methyl-4-nitroaniline; 3: 2-methyl-6-nitroaniline.
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DCCF ¼ 1:02þ 0:0096X1 þ 0:13X2 � 0:060X3 � 0:045X12 � 0:062

X13 � 0:26X23 � 0:070X2
1 � 0:089X2

2 � 0:29X2
3 ð4Þ

DCCC ¼ 0:99� 0:0059X1 þ 0:20X2 � 0:010X3 � 0:045X12 � 0:062

X13 � 0:26X23 þ 0:0042X2
1 � 0:16X2

2 � 0:33X2
3 ð5Þ

DFF ¼ 0:98� 0:20X1 � 0:04X2 � 0:23X3 � 0:015X12 � 0:029

X13 � 0:058X23 � 0:0098X2
1 þ 0:0036X2

2 � 0:21X2
3 ð6Þ

The optimal conditions for four experimental designs were obtained with
a global degree of satisfaction of D for the combination responses. There
are several coded variable values (X1, X2, X3) for every model, respec-
tively, corresponding to their maximum DBBD (1), DCCF (1), DCCC (1),
and DFFD (1), respectively. Generally, their response surfaces and con-
tour plots of D functions could be represented and visualized for the
choice of optimization conditions within the selected ranges (not shown).

The optimal chromatograms of four models using the desirability
functions were also represented by another six experiments in Figure 12.
Baseline separation of the analytes could be obtained during 5 min with a
resolution more than 1.5, using the optimal condition with a coded values
of (0, 0, 0). The results from the experiments using the optimal condition
and testing conditions were compared to the predicted values from four
models Table 7). Close agreement using BB, CCF, CCC, and FF design
models could be found in most cases between observed and predicted
responses.

Table 7. Observed and predicted response for testing of the
predictability of the models

R2 R2
adj. Predicted R2

BB Rs 0.9985 0.9966 0.9815
T2 0.9824 0.9598 0.7188

0.7188
CCFs Rs 0.9993 0.9987 0.9965
T2 0.9882 0.9775 0.8863
CCCs Rs 0.9970 0.9944 0.9788

T2 0.9259 0.8592 0.4374
FFDs Rs 0.9985 0.9977 0.9960

T2 0.9828 0.9738 0.9541
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CONCLUSIONS

The simultaneous evaluation of the experimental variables was carried
out for the separation of typical isomers by means of BB, CCF, CCC,
and FF design models with efficient estimation of the first and second
order coefficients. For four designs, all design points can be sure to fall
within a safe operating zone, which have similar results for optimization
and prediction in our studies. An appropriate use of experimental designs
ensures that experimental data contain maximum information and pro-
vides the availability of answers to real chemical problems, confirming
how the application of chemometric techniques in analytical chemistry
is needed and can be successfully realized.[27,28] Compared to empirical
methods, chemometrics can greatly simplify the optimization procedure
finding the appropriate experimental conditions.

ACKNOWLEDGMENTS

The financial support from the NSFC-KOSEF Scientific Cooperation
Program (No.20610176), Program for New Century Talents of
University in Henan Province (No.2006HNCET-01), and Program for
Backbone Teacher in Henan Province was acknowledged.

REFERENCES

1. Siouffi, A.M.; Phan-Tan-Luu, R. Optimization methods in chromatography
and capillary electrophoresis. J. Chromatogr. A. 2000, 892, 75–106.

2. Zhang, Y.P.; Zhang, Y.J.; Gong, W.J.; Wang, X.M.; Xue, H.Y.; Lee, K.P.
Design of experiments for capillary electrophoretic enantioresolution of tam-
sulosin using sulfated-b-cyclodextrin as chiral selector. J. Liq. Chromatogr. &
Rel. Technol. 2007, 30, 215–234.

3. Jimidar, M.; Aguiar, P.F.; Pintelon, S.; Massart, D.L. Optimization and
validation of an enantioselective method for a chiral drug with eight stereoi-
somers in capillary electrophoresis. J. Pharm. Biomed. Anal. 1997, 15,
709–713.

4. Suresh Bahu, C.V.; Chung, B.C.; Yoo, Y.S. Experimetal design to investigate
factors affecting capillary zone electrophoresis. Anal. Lett. 2004, 37,
2485–2499.

5. Zhang, Y.P.; Lee, K.P.; Kim; S.H.; Gopalan, A.; Yuan, Z.B. Comparative
study on the chiral separation of phenyl alcohols by capillary electrophoresis
and liquid chromatography. Electrophoresis 2004, 25, 2711–2719.

6. Zhang, Y.P.; Gong, W.J.; Lee, K.P.; Choi, S.H. Computer-assisted, predic-
tion, and multifactor optimization of hydrophobic compounds in liquid
chromatography. Microchim. Acta 2005, 152, 113–121.

2914 Y.-J. Zhang et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



7. Dewe, W.; Marini, R.D.; Chiap, P.; Hubert, P.; Crommen, J.; Boulanger, B.
Development of response models for optimising HPLC methods.
Chemomet. & Intell. Lab. Sys. 2004, 74, 263–268.

8. Gabrielsson, J.; Lindberg, N.O.; Lundstedt, T. Chemometrics in capillary
electrophoresis. Part B: Methods for data analysis. J. Chemomet. 2002, 16,
141–160.

9. Zhang, Y.P.; Zhang, Y.J.; Gong, W.J.; Gopalan, A.I.; Lee, K.P.J. Rapid
separation of Sudan dyes by reverse-phase high performance liquid chroma-
tography through statistically designed experiments. J. Chromatogr. A. 2005,
1098, 183–187.

10. Jansen, J.J.; Hoefsloot, H.C.J.; Greef, J.; Timmerman, M.E.; Westerhuis,
J.A.; Smilde, A.K. ASCA: analysis of multivariate data obtained from an
experimental design. J. Chemomet. 2005, 19, 469–481.

11. Ficarra, R.; Cutroneo, P.; Aturki, Z.; Tommasini, S.; Ficarra, P. An experi-
mental design methodology applied to the enantioseparation of a non-
steroidal anti-inflammatory drug candidate. J. Pharm. Biomed. Anal. 2002,
29, 987–997.

12. Hillaert, S.; Heyden, Y.; Bossche, W.V. Optimisation by experimental design
of a capillary electrophoretic method for the separation of several inhibitors
of angiotensin-converting enzyme using alkylsulphonates. J. Chromatogr. A.
2002, 978, 231–242.

13. Servais, A.C.; Fillet, M.; Chiap, P.; Abushoffa, A.M.; Hubert, P.; Crommen, J.
Optimization of the separation of -blockers by ion-pair capillary electrophoresis
in non-aqueous media using univariate and multivariate approaches. J. Sep. Sci.
2002, 25, 1087–1095.

14. Avois, L.M.; Mangin, P.; Saugy, M. Development and validation of a capil-
lary zone electrophoresis method for the determination of ephedrine and
related compounds in urine without extraction. J. Chromatogr. B. 2003,
791, 203–216.

15. Loukas, Y.L.; Sabbah, S.; Scriba, G.K.E. Method development and valida-
tion for the chiral separation of peptides in the presence of cyclodextrins
using capillary electrophoresis and experimental design. J. Chromatogr. A.
2001, 931, 141–152.

16. Ragonese, R.; Macka, M.; Hughes, J.; Petocz, P. The use of the
Box–Behnken experimental design in the optimisation and robustness testing
of a capillary electrophoresis method for the analysis of ethambutol hydro-
chloride in a pharmaceutical formulation. J. Pharm. Biomed. Anal. 2002,
27, 995–1007.

17. Hows, M.E.P.; Perrett, D.; Kay, J. Optimisation of a simultaneous separation
of sulphonamides, dihydrofolate reductase inhibitors and b-lactam antibio-
tics by capillary electrophoresis. J. Chromatogr. A. 1997, 768, 97–104.

18. Al-Haj, M.A.; Kaliszan, R.; Nasal, A. Test analytes for studies of the
molecular mechanism of chromatographic separations by quantitative
structure-retention relationships. Anal. Chem. 1999, 71, 2976–2985.

19. Kaul, N.; Agrawal, H.; Paradkar, A.R.; Mahadik, K.R. Effect of system
variables involved in packed column supercritical fluid chromatography of
stavudine taken as model analyte using response surface methodology along

Optimization Strategies using Response Surface Methodologies 2915

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



with study of thermodynamic parameters. J. Pharm. Biomed. Anal. 2007, 43,
471–480.

20. Kaliszan, R. in Structure and Retention in Chromatography. A Chemometric
Approach, Harwood Academic Publishers: Amsterdam, The Netherlands,
1997.

21. Osborne, L.M.; Miyakawa, T.W. Use of experimental design in theoptimiza-
tion of HPLC methodology for the separation of stereoisomers. J. Liq.
Chromatogr. & Rel. Technol. 1997, 20, 501–509.

22. Harang, V.; Tysk, M.; Westerlund, D.; Isaksson, D.; Johansson, G. A. statis-
tical experimental design to study factors affecting enantioseparation of pro-
pranolol by capillary electrophoresis with cellobiohydrolase (Cel7A) as chiral
selector. Electrophoresis. 2002, 23, 2306–2319.

23. Ivanovic, D.; Medenica, M.; Jancic, B.; Maenovic, A.; Markovic, S. Chemo-
metrical approach in fosinopril-sodium and its degradation product fosino-
prilat analysis. Chromatographia 2004, 60, 87–92.

24. Jimidar, M.I.; Vennekens, T.; Ael, W.V.; Redlich, D.; Smet, M.D. Optimiza-
tion and validation of an enantioselective method for a chiral drug with
eight stereoisomers in capillary electrophoresis. Electrophoresis. 2004, 25,
2876–2884.

25. Smet, E.; Staelens, L.; Heyden, Y.V.; Baeyens, W.R.G. Optimization of the
chiral separation of some 2-arylpropionic acids on an avidin column by mod-
eling a combined response. Chirality 2001, 13, 556–567.

26. Alesolo, U.; Gonzalez, L.; Jimenez, R.M.; Alonso, R.M. Multivariate optimi-
sation of a cyclodextrin-assisted-capillary zone electrophoretic method for the
separation of torasemide and its metabolites. J. Chromatogr. A 2003, 990,
271–279.

27. Sentellas, S.; Saurina, J. Chemometrics in capillary electrophoresis. Part A:
Methods for optimization. J. Sep. Sci. 2003, 26, 875–885.

28. Sentellas, S.; Saurina, J. Chemometrics in capillary electrophoresis. Part B:
Methods for data analysis. J. Sep. Sci. 2003, 26, 1395–1402.

Received March 22, 2008
Accepted May 2, 2008
Manuscript 6339

2916 Y.-J. Zhang et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1


